

An introduction to OpenSDN source
code

By Matvey Kraposhin
kraposhin.online

https://kraposhin.online/

2Instead of foreword
● Even the material might sound too

complicated, it can be useful in the
future or for others

● Low level details are actually as a
multiplication table: we hate learning
it, but we appreciate it later

● If something is not clear to you, then
probably it is not totally clear for me

3
The software
architecture

SDN classification
and

where OpenSDN
falls into

OpenSDN main
components

Programming
languages

OpenSDN roles:
- compile
- OS
-VR

Data streams:
- packets
- routes
- configuration

Streams + Roles
= OpenSDN

Types of
databases

Cassandra

Oper DBIF-MAP

REST

Graphs

State machines

L7 vApps: vDNS

Controller
pipeline Thrift/Sandesh

External libraries

Routes
Leaking

R
epos / src

code num
bers

tf-dev-env
G

errit

Logs/UVE/Traces

vRouter Agent

vRouter
Forwarder

Unit tests

Config API

Protocols &
formats

4
Why does architecture is needed?

● Architecture as a logically connected compound of
verified technical decisions and solutions is bounded by:
– Functional requirements, e.g.:

● Network virtualization
● Switch and router virtualization
● Network Function Virtualization

– Functional properties and indicators, e.g.:
● scalability, performance, user friendliness etc

5
An SDN or an SDN controller?

● The terms are different, while sometimes they are
used interchangeably

● The SDN is a technology, while an SDN controller
is a part of some SDN solution (platform)

● Many references use “SDN controller”, so do we

6SDN controller properties:
references

1. Scalability, Consistency, Reliability and Security in SDN Controllers: A Survey of
Diverse SDN Controllers by S. Ahmad and A. Hussain Mir

2. Reliability Challenges in Software Defined Networking by V. Netes and M.
Kusakina

3. Performance Evaluation of Different SDN Controllers: A Review by S. Askar and F.
Keti

4. OpenContrail as SDN controller for NFV infrastructure in AT&T network by A.
Gorbunov

5.High-Performance Packet Routing Acceleration for Cloud Systems Using High
Bandwidth Memory by T. Shimuzu et all.

6. Accelerating Contrail vRouter / Netronome report

7SDN controller properties
● Scalability is an ability of an SDN controller to response to growing

demands from the network (requests, flows, etc)
● Consistency means having a stable and updated network wide view
● Reliability is an SDN controller’s degree of resilience to failures in

the network
● Security is an ability to withstand malicious attacks
● Performance is a quantity that shows how many requests an SDN

controller can handle per some period of time

8Types of SDN controllers

● Centralized:
– problems with scalability, reliability and security
– small enterprises, campus networks, domain specific networking in small-scale data centers and edge

networks
– example: NOX

● Distributed:
– addresses issues of a centralized type, but at the cost of consistency, performance
– tradeoff between performance and scalability might result in degradation of reliability
– Break into: 1) both logically and physically distributed and 2) logically centralized, physically distributed
– example: ONOS, ODL ,TF/OpenSDN

● Hybrid
– Include centralized and distributed (for specific vendors)

9SDN controller landscape

● Controllers:
– OpenSDN/Tungsten Fabric/OpenContrail
– OVN/OVS
– OpenDayLight, ONOS
– RunSDN (Russian fast SDN controller written in C++)
– NOX/POX
– Ryu

● References
– https://tech.ginkos.in/2019/04/list-of-openflow-controllers-for-sdn.html
– https://www.oreilly.com/library/view/sdn-software-defined/9781449342425/ch04.html
– https://en.wikipedia.org/wiki/List_of_SDN_controller_software

https://tech.ginkos.in/2019/04/list-of-openflow-controllers-for-sdn.html
https://www.oreilly.com/library/view/sdn-software-defined/9781449342425/ch04.html
https://en.wikipedia.org/wiki/List_of_SDN_controller_software

10Where OpenSDN falls into
● It is physically distributed and logically

centralized SDN controller
● It is partially hybrid because it can program

Juniper devices
● It is more than a controller, since it includes

virtual switch (unlike ODL, for example) of
different types: kernel module, DPDK, user
space application

11
Some OpenSDN controller features

● Logically centralized, physically distributed type
● Flow-based granularity: a trade-off between scalability

and control over a network
● Extension of limited control logic back to forwarding

devices [1] to speed-up responses for flow requests
(not possible for OpenFlow![1])

● Delegates state storage, replication and management
of state information to external data store (a database)

12OpenSDN architecture

13OpenSDN: a closed management
cycle

● Almost all modern programs know how to forward and route packets
(OVS/OVN, Calico, OpenDayLight, Cilium etc)

● However, a larger problem still persists (Zucht und Ordnung): how to keep
order in computer networks generating vast number of events and
characterized by huge diversity of protocols and environment and billions of
connections?

● At the same time, an average person can process only 7±2 words at once
● How can we find the root reason of troubles and failures?
● Possible answer can be in an architecture with closed cycle: Config →

Controller → Hypervisor (Agent /Forwarder) → Analytics → Config

14OpenSDN management plane
● Manages a virtual

network
configuration

● Analyzes the
current state of a
virtual network

● Provides a UI for
the management
of virtual networks

15OpenSDN control plane
● Routes management

– Interaction with external BGP routers
– Synchronization of routes from different sources
– Routes transfer to vRouters

● Virtual networks configuration management
– Creation of a virtual networks representation from

persistent database (Config)
– Distribution of the representation to hypervisors

(vRouter)

16OpenSDN data plane
● OpenSDN vRouter replaces a part of Linux networking

system (bridges and ip tables)
● The component forwards packets between interfaces

(virtual machines) according to given rules
● vRouter consists of vRouter Forwarder that performs

packets forwarding and vRouter Agent which is a
mediator between OpenSDN Controller and vRouter
Forwarder

vRouter Forwarder 1

vh
os t0

pkt0

et
hX

pkt1 pkt2 pkt3

tap0 tap1 ... tapN

17Coding challenge
● 3 layers
● 5 components
● Dozens of applications
● How to implement all this complexity?

18OpenSDN programming languages
● JS: a GUI
● Python: input data management
● C++: operative database management
● C: packets forwarding
● Apache Thrift (Sandesh): interface definition language
● And others

19C vs C++ in OpenSDN
● OpenSDN uses C and C++ languages for forwarding,

routing and operative configuration management layers
● Responsibility zones are distributed as followed:

– Where high performance is demanded and simple logic is
possible (this is data plane usually), then C language is used

– When algorithms are complicated and requirements to
performance can be reduced then C++ language is performed
(control plane)

20Advantages provided by different
programming languages

● asm: high performance and memory thrift
● C: portability and proximity to asm/hardware
● C++: extensibility and relative proximity to

asm/hardware
● Java: processor architecture independence
● Python: usage flexibility, simple and concise syntax

21Performance vs convenience

Lukyanov hydraulic
integrator
(Buckingham π theorem)

https://habr.com/ru/articles/228283/

Robert G. Plantz: Introduction to Computer Organization with x86-64 Assembly Language & GNU/Linux

● Usually, the closer a language to hardware, the
higher the performance is, but this increases
risk of an error and severity of consequences

● However, when a language is close to a
specific domain, then programming is easier,
but performance is lower

↓ Not always ↓

22Programming languages types
● Machine code
● Assembler
● General purpose

– Compiled
● C/C++/Go/Rust/Java/Fortran

– Interpreters
● Python, bash, Julia

● Domain-specific:
– RELAP5/MOD3, LaTeX

● Declarative:
– Logic programming (Prolog)
– Functional programming

(Lisp, C++)
– DSL (LaTeX, SQL, C++)

● Imperative:
– Procedural (Fortran, C++)
– Object-oriented (C++, Java)

23
OpenSDN roles

● A compiler
● A network operating

system
● A virtual router

DOI: http://dx.doi.org/10.1080/10807039891284820

All these roles are actually levels

24OpenSDN as a compiler
● According to Contrail Architecture, Chapter

“Scale-Out Architecture and High Availability”
● This SDN can be deemed as a compiler
● That compiles a high level data model into the

low-level one

25Typical compilation stages
● Pre-processor → modified code without (#

directives)
● Compiler (translation) → asm code
● Assembler → machine code (object files)
● Linker (composer) → a program (machine code

with all links)

26Data model
● A data model consists of a set of objects definitions,

their capabilities, and the relationships between
them

● A data model can be: high level (external input) and
low level (generated internally)

● A data model yields a state, which can be of
configuration or operative* type

*While Contrail documentation uses term “operational”, it seems that “operative” is closer
to the proper meaning according to the Oxford dictionary

27States
● A configuration state is a set of objects and relations

between the the described according to a high level data
model (intended state, what we want)

● An operative state is a set of objects corresponding to
the low level data model (what we have now in the virtual
network)

● OOP analogies: a data model → a class, a state → an
instance

28Traits of OpenSDN as a
programming language

● Allegedly, it is a declarative programming language
● Most likely it is an interpreter
● Provides instruments to define virtual networks

(so, it is a DSL)
● Programs virtual switchers
● Provides tools for failures diagnostics

29OpenSDN as a network OS
● NOS provides a uniform and centralized programmatic interface

to the entire network without managing the network itself
● The network is managed by special programs written in programs

are written in terms of high-level abstractions
● Natasha Gude et al, NOX: Towards an operating system for

networks // ACM SIGCOMM Computer Communication Review,
38(3):105-110, 2008

● More than 1k citations

30NOS: geeksforgeeks.org
● https://www.geeksforgeeks.org/what-is-a-

network-operating-system/

31What does OpenSDN provide as a
NOS

● Allocation and destruction of network resources (IP, MAC,
etc)

● Support for network addressing and routing
● Access management
● Packets forwarding
● Provides a platform for network function virtualization
● Provides tools for state analysis if it looks like a duck,

walks like a duck,
and quacks like a
duck, then it's
probably a duck

32OpenSDN as a virtual router
● OpenSDN has vRouter Forwarder with L2 and

L3 packets switching
● It has a BGP router to exchange routes with

other routers
● Essentially, it is a virtual router on top of a NOS

33Main data streams in OpenSDN
● A packets data stream
● A routes data stream
● A configuration data stream

34The packets data stream

vRouter Forwarder 1

vh
os

t0

pkt0

et
hX

pkt1 pkt2 pkt3

tap0 tap1 ... tapN

vRouter Forwarder 2

et
hX

pkt0

vh
os

t0

pkt1 pkt2 pkt3

tap0 tap1 ... tapN

● Packets go between
TAP-interfaces of a
hypervisor, between
hypervisors (via
eth), between host
OS and TAP-
interfaces, between
TAP-interfaces and
pkt interfaces

35The routes data stream

36The configuration data stream

37Roles + Data Streams = OpenSDN
● Compiler + high level data model =>

virtual networks resources (low level data
model)

● OS + low level data model => virtual
networks resources management + RIB

● Virtual router + low level data model =>
RIB

● Virtual router + RIB => packets forwarding
Compiler OS VR

Conf

RIB

FIB

Roles

P
la

ne
s/

S
tre

am
s

38How these tools are linked and
implemented?

● What technologies are used in OpenSDN?
● What concepts, data structures and algorithms

are employed?
● How different parts are linked together?

39
Types of REST messages

● Create
– Creates a new element, e.g. a virtual network, a virtual machine interface, etc

● Read
– Reads the state of a specified element

● Update
– Updates the state of a specified element

● Delete
– Deletes a specified element

● Link
– Creates a link between two elements (for example, between a virtual machine interface and an IP

instance)

http://controller-ip:8082/documentation/index.html
Representational State Transfer

40REST request structure
● Command: usually curl
● Type is one of: POST/GET/PUT/DELETE
● Header
● Request body
● URL

<Command> <Type> <Header> <Request body> <URL>

41Where requests are stored?
● Persistent DB

– Employed for long-term storage of a virtual network state
(the relationships graph of network entities

– Cassandra DB (OpenSDN, Netflix, Instagram)
● Operative storage or DB

– Contains the instant state of a virtual networks and it's
participants, an is a derivative data w.r.t. the persistent DB

42Logically monolithic application
● But physically distributed

– Controller
– DNS server
– Config API
– And perhaps others

● This implies that operative DB synchronizes not only between
threads, but even between processes located on physically
different computational nodes

43Cassandra
● Key – value database
● Uses Cassandra Query Language (similar to SQL)
● Persistent storage: writes are fast, read are slow

44
IF MAP DB

● IF MAP DB is an instant representation of low-level
data model instance (operative state)

● Applications listen to Cassandra DB
● When a change happens, it is processed as a JSON

and stored in IF-MAP Graph DB:
– Objects as vertices
– References as edges

https://trustedcomputinggroup.org/resource/overview-of-trusted-network-connect-tnc-if-map/

https://trustedcomputinggroup.org/resource/overview-of-trusted-network-connect-tnc-if-map/

45
Operative DB (OperDB)

● OperDB is stored in RAM and created from low-level
data model

● Consists of:
– Tables store elements of a same type (e.g., ports, flows)
– Partitions are used to separate a table between CPUs
– Entries represent single units of information stored in tables
– States are additional information added optionally to entries
– Requests are objects to manipulate entries

46DB Graph
● Represents the operative state as a graph
● Relates IF-MAP records to vertices and edges
● Handles deletion and addition of new vertices

and edges, search and walks

47Graphs in OpenSDN
● The data model graph
● An objects relationships graph
● Configuration propagation graphs
● Operative DB graph (red-black trees), tries, etc
● State machines

48Data model graph
● Directed

Acyclic
Graph
(polytree)

● Simplified
version

49Data model graph (full)
● Includes

almost all
nodes

● Has been
built
from .yml
files

50Objects relationships graph
● DAG

(polytree)
● Can be

viewed via
Introspect
UI

51Configuration propagation graph(s)
● Propagation of changes (e.g., inside controllers)
● Graph cuts construction (e.g., controller to

agent)
● Disconnected acyclic graph (polyforest)

52OpenSDN polyforest example
● Propagation of

changes
polyforest

bgp-peering bgp-peering self

bgp-router self bgp-peering

bgp-router-sub-cluster self

instance-bgp-router bgp-peering

connection self connection

connection connection

routing-instance self

instance-target

connection

virtual-network-routing-instance

routing-policy-routing-instance

route-aggregate-routing-instance

instance-bgp-router

self connection

self

self

self

self

53Red-black tree
● Is used to store various object in OpenSDN

tables (DBTable class), boost::intrusive::set,
incl. RIB in controller, IF-MAP, etc

https://brilliant.org/wiki/red-black-tree/

54PATRICIA Trie ‘

● Is used to store INET Unicast routes tree in an Agent
process (due to it’s compactness)

● Performs LPM

https://cw.fel.cvut.cz/b181/_media/courses/b4m33pal/paska13trie.pdf

Donald R. Morrison: PATRICIA—Practical
Algorithm To Retrieve Information Coded
in Alphanumeric, Journal of the ACM,
Volume 15 Issue 4, Oct. 1968, pp 514-534.

https://cw.fel.cvut.cz/b181/_media/courses/b4m33pal/paska13trie.pdf

55State machines
● BGP sessions, XMPP

sessions
● Directed, connected

cyclic graph

56Full XMPP SM

I A

C

OS

OC
E EvHoldTimerExpired

(HoldTimerCancelled()),
EvStreamFeatureRequest,
EvTlsProceed,
EvStartTls
(wrong event.session),
EvStatTls
(SendProceedTls()),
EvTlsHandShakeSuccess,
EvXmppOpen
(wrong event.session),
EvXmppOpen
(!SendOpenConfirm())

EvXmppOpen
(IsAuthEnabled())

EvTcpClose
(event.session),
EvXmppKeepalive,
EvXmppMessageStanza,
EvXmppIqStanza,
EvHoldTimerExpired
(HoldTimerCancelled)

EvTcpClose
(IsActiveChannel()),
EvHoldTimerExpired
(IsActiveChannel()),
EvStreamFeatureRequest
(!SendStartTls()),
EvStop
(IsActiveChannel()),
EvTlsHandShakeSuccess
(IsActiveChannel),
EvTlsHandShakeFailure
(IsActiveChannel)

EvTcpClose,
EvHoldTimerExpired,
EvStartTls
(!SendProceedTls()),
EvStop,
EvTlsHandShakeFailure,
EvAdminDown

EvXmppOpen

EvTcpClose
(IsActiveChannel),
EvHoldTimerExpired
(IsActiveChannel),
EvStop
(IsActiveChannel)

EvXmppOpen

E
vT

c p
C

lo
s e

,
E

v H
o l

d T
im

e r
E

xp
ire

d,

E
v S

to
p

EvXmppOpen
(IsAuthEnabled)

EvTcpClose
(wrong event.session),
EvXmppOpen
(wrong event.session),
EvHoldTimerExpired
(HoldTimerCancelled())

EvTcpConnected
(SendOpen)EvAdminDown

EvTcpConnectFail
(wrong event.session()),
EvTcpClose
(wrong event.session())

EvTcpPassiveOpen,

EvOpenTimerExpired,

EvXmppOpen

(Deleted Connection),

EvStop

EvXmppOpen

EvTcpClose,
EvHoldTimerExpired,
EvStop,
EvAdminDow

EvConnectTimerExpired

EvAdminDown
EvConnectTimerExpired,
EvTcpConnected
(!SendOpen),
EvTcpConnectFail,
EvTcpClose,
EvStop

EvStart

EvTcpClose,
EvXmppOpen,
EvStop,
EvAdminDown

OC — Open Confirm
OS — Open Sent
E — Established
C — Connect
A — Active
I — Idle

57Controller
● Central point for routing information base (RIB)
● Central point of IF-MAP operative data (low level data

model) for OpenSDN vRouters
● Logically centralized and physically distributed

application
● Works as a pipeline: reads persistent DB and

creates/updates the operative state

58
Connections with other modules

Controller 1 Controller 2

Controller 3

vRouter kvRouter 1

Config 1 Config 2

Config 3

59
The pipeline stages and RIB classes

6

1
2

3

4

BgpXmppChannel::
ProcessItem

5
BgpExport::Export

RibOutUpdates

BgpMessage

BgpXmppMessage RibOutAttr

RibOut

DBTable::Add

BgpTable:
:Input

BgpTable::
InputCommon

UpdateQueue

RibOutUpdates

RibUpdateMonitor

60
vRouter Agent main parts

● Databases (tables and graphs): IF-MAP +
operative

● Servers: Metadata proxy, Introspect, etc
● Services (DNS, DHCP, ICMP, etc)
● vRouter Forwarder synchronization

61OpenSDN RIB elements
● Virtual Network (VN)
● Virtual Routing & Forwarding (VRF)
● Route tables (EVPN & INET)
● Route
● Prefix:

– Prefix address – L3 (IP) and L2 (MAC)
– Prefix length

● Path
– Nexthop
– Peer

• A peer together with a
nexthop make up the path.

• List of paths make up a
route. Combination of a
peer type and a nexthop is
unique within a route.

• Routes make up a route
table.

• Route tables make up a
VRF instance.

• VRF instance with Virtual
Network makes up
representation of a network

62OpenSDN RIB exchange

Controller Agent 1 Agent 2 Agent 3
Contro
ller 1

Contro
ller 2

Agent
1

Agent
2

Agent
3

vrouter
1

vrouter
2

vrouter
3

Each Agent is responsible for storing of the part of the Controller’s table. There is a part
corresponding to local VM interfaces. The remaining part is stored as tunnels.

63
Routes leaking

● Routes leaking is a procedure of routes synchronization
between two tables according to some predefined rules:
– Introduction of new routes
– Modification of existing routes
– Deletion of obsolete routes

● This procedure is a key concept of OpenSDN VxLAN
control plane implementation

64Routes leaking example
Prefix1

Path1: Nexthop1 Peer1
Path2: Nexthop2 Peer2

Table1

Prefix3
Path3: Nexthop3 Peer1
Path4: Nexthop4 Peer2

Prefix1
Path1: Nexthop1 Peer1

Table3

Prefix3
Path3: Nexthop3 Peer1

Prefix5
Path5: Nexthop5 Peer1
Path6: Nexthop6 Peer2

Table2

Prefix7
Path7: Nexthop7 Peer1
Path8: Nexthop8 Peer2

Prefix5
Path5: Nexthop5 Peer1

Prefix7
Path7: Nexthop7 Peer1

Routes can be
synchronized between
tables in one VRF
instance or between
VRF instances.

65VxLAN: an example of routes
leaking

● VxLAN (RFC 7348):
– Data plane: VxLAN header in UDP
– Control plane:flood-and-learn, MP BGP, etc

● OpenSDN VxLAN: a special type of logical router
(VxLAN LR), which may be similar to “central
authority/BGP” approach from RFC 7348

https://datatracker.ietf.org/doc/html/rfc7348

https://datatracker.ietf.org/doc/html/rfc7348

66VxLAN routes leaking in OpenSDN:
an example

● There are 3 routing-bridge pairs of
VRF instances:
– bridge1-routing
– bridge2-routing
– bridge3-routing

● When routes are copied from each
bridge VRF into the routing VRF,
this creates special nexthops
(VRF type) in other bridge VRF
instances: the references to
leaked routes

VxLAN
LR

Bridge
VRF 1

Bridge
VRF 2

Bridge
VRF 3

Rou-
ting
VRF

interface

interface VRF

VRFVRF

67Analogy with baskets for the
modified case

Routing VRF Inet route

Bridge VRF Inet route

Routing VRF EVPN Type 5 route

Interface ECMP Interface

LOCAL_VM_PORT BGP_PEER

LOCAL_VM_PORT BGP_PEER

XMPP/BGP

● In this case FIP/AAP leak naturally, BGPaaS
routes leaking requires minor changes to the
code. ECMP routes are now identical in bridge
and routing VRF instances.

● 2 parts of TF have been rewritten completely:
● Leaking of LOCAL_VM_PORT routes
● BGP/XMPP routes input

68vRouter Forwarder FIB

69Virtual Networks Apps: vDNS
● There are other applications providing network

services for tenants
● Example: vDNS

vDNS
binary

vRouterVM

Cassandra
DB

bind9

70Sandesh/Apache Thrift: How
everything is glued

● Uses and extends Apache Thrift
● Uses Flex and Bison
● Creates declarations, definitions and auxiliary

implementations from IDL definitions
● OpenSDN uses Sandesh to communicate between

modules (vRouter Agent and vRouter Forwarder,
contrail-tools, etc), to create and dispatch
introspection information, for UVE, debug and
other purposes

71
Apache Thrift

● Supports C/C++/python/Java/Go and other

languages
● Literature:

– Programmers guide to Apache Thrift by R.
Abernethy

– readthedocs
● Transports: socket (TCP/IP), file, memory

https://thrift-tutorial.readthedocs.io/en/latest/intro.html

https://thrift-tutorial.readthedocs.io/en/latest/intro.html

72Apache Thrift Basics

● A user defines interfaces of
interaction between components
(IDL file with extension .thrift)

● Selects:
– Socket type
– Transport type
– Protocol type

● Writes implementation code for
services

73Some Apache Thrift terms
● Socket – a marker which allows to identify remote

part of a conversation, i.e. identifies the receiver and
the sender of single communication

● Transport – a mechanism of communication between
parts of the conversation (memory, TCP, file, etc)

● Protocol – how messages of the conversation are
stored (binary, JSON, etc)

74The example of a thrift file

● https://github.com/apache/thrift/blo
b/master/tutorial/tutorial.thrift

● struct – defines user type that
contains several primitive types

● exception- is a structure that is
returned in case of the error

● service – named definition of
remote functions that are available
for parts of conversation

● Other keywords are available as
enum, namespace, typedef, union,
etc

https://github.com/apache/thrift/blob/master/tutorial/tutorial.thrift
https://github.com/apache/thrift/blob/master/tutorial/tutorial.thrift

75Apache Thrift alternative
● Capnproto – serialization and RPC library
● https://github.com/capnproto/capnproto
● Supports C++,C,python,Go,Rust

https://github.com/capnproto/capnproto

76
Sandesh technology

● Extends Apache Thrift
● Provides new tools for data collection and

exchange (UVE, tracing, introspection, etc)
● New keywords are introduced: request,

response, sandesh, traceobject, objectlog, uve

77
Sandesh types

● sandesh – indicates that type belongs to Sandesh
system

● request – a request specification to the module (sub-
system)

● response – a response specification for the module
(sub-system)

● traceobject – trace record
● objectlog – log record
● uve – User Visible Object

78Collector / Generator roles
● Participants of conversations in Sandesh can have two main roles:

– Collector (the one who collects messages/information)
– Generator

● Each participant (application) of a conversation should initialize
Sandesh context using InitCollector or InitGerator functions
depending on its role

● ConnectToCollector – connects to a collector when it is created
(actually, TCP/IP socket specification)

79
Sandesh introspection ports

"contrail-vrouter-agent" : 8085
"contrail-control" : 8083
"contrail-collector" : 8089
 "contrail-query-engine" : 8091
"contrail-analytics-api" : 8090
"contrail-dns" : 8092
"contrail-api" : 8084
"contrail-api:0" : 8084
"contrail-schema" : 8087
"contrail-svc-monitor" : 8088
"contrail-device-manager" : 8096
"contrail-config-nodemgr" : 8100

"contrail-control-nodemgr" : 8101
"contrail-database-nodemgr" : 8103
"contrail-storage-stats" : 8105
 "contrail-ipmi-stats" : 8106
 "contrail-inventory-agent" : 8107
 "contrail-alarm-gen" : 5995
 "contrail-alarm-gen:0" : 5995
 "contrail-snmp-collector" : 5920
 "contrail-topology" : 5921
 "contrail-discovery" : 5997
 "contrail-discovery:0" : 5997
"contrail-analytics-nodemgr" : 8104

"contrail-vrouter-nodemgr" : 8102
src/sandesh/common/vns.sandesh

https://github.com/OpenSDN-io/tf-controller/blob/f7b0f7376d49b3970bc15a30944ced967a93e6da/src/sandesh/common/vns.sandesh#L67

80
Sandesh, UVE, Logging

● Sandesh is an RPC and serialization tool for communicating
between program components

● UVE is a tool to gather information about state of OpenSDN
entities (virtual networks, VRF instances, etc)

● Logging is a tool to record some meaningful events of
OpenSDN into a separate file

● Tracing is similar to Logging, but with storing messages in
memory of modules

81External libraries
● Intel TBB: management of parallel tasks inside one application
● Boost: an extended C++ containers library
● log4cplus: a logging library
● bind9: a DNS server
● scons: a python-based build management system
● Apache Thrift: an IDL and RPC library
● DPDK: a library for packets processing (a substitution for kernel network

drivers)
● and others

82Protocols and main formats
● REST – northbound interface

● IF-MAP– objects and data model

● BGP– RIB exchange w/ peers

● Netlink– southbound interface

● Shared memory– connection
between vRouter modules

● JSON– conf storage

● XMPP– RIB exchange w/ VRs

● BGP– RIB exchange w/ peers

● Sandesh – IDL and analytics

● XML– data model storage

83
Unit tests frameworks

● TF uses next testing frameworks:
– gtest for contrail-common, controller, vRouter Agent and other

libs & apps written in C++;
– pytest for vRouter Forwarder, uses:

● DPDK to run vRouter Forwarder in user space
● vtest program to send information into vRouter Forwarder mock
● pylib to call vtest from python
● sandesh to make communication between vtest and vRouter Forwarder

Only gtests are considered in next slides

84Main repositories
● https://github.com/OpenSDN‑io/community
● https://github.com/OpenSDN‑io/docs
● https://github.com/OpenSDN‑io/tf‑vrouter
● https://github.com/OpenSDN‑io/tf‑controller

85OpenSDN source code in numbers
● Not accounted parts of the project

– Sandesh interface declarations
– auto-generated code
– Web UI

● Total count of lines of code for 4 languages: 1 497 376, amongth them:
– C++: 786 799
– Go: 350 164
– Python: 286 965
– C: 73 448

● With average efficiency of 70 lines per day we get approximately 92 worker-years

86tf-dev-env
● A container for manual compilation and

packaging OpenSDN components
● URL: https://github.com/OpenSDN-io/tf-dev-env
● Run on: Rocky 9.5 definetely, Ubuntu 22 (to be

checked)

https://github.com/OpenSDN-io/tf-dev-env

87tf-dev-env first steps
● Use README.md provided by the repository
● Container requires root privileges or passwordless

sudo
● Download the repository:

git clone http://github.com/opensdn-io/tf-dev-env

● Initialize the repository:
tf-dev-env/run.sh none

88tf-dev-env available options

89Sending changes to the project
● All changes must be submitted via the Gerrit

system: https://gerrit.opensdn.io/
● Contribution guide:

– https://github.com/OpenSDN-io/docs/blob/master/c
ontributing-to-opensdn/getting-started/getting-starte
d-with-opensdn-development.rst

– https://docs.opensdn.io/contributing-to-opensdn/gett
ing-started/getting-started-with-opensdn-developme
nt.html

https://gerrit.opensdn.io/
https://github.com/OpenSDN-io/docs/blob/master/contributing-to-opensdn/getting-started/getting-started-with-opensdn-development.rst
https://github.com/OpenSDN-io/docs/blob/master/contributing-to-opensdn/getting-started/getting-started-with-opensdn-development.rst
https://github.com/OpenSDN-io/docs/blob/master/contributing-to-opensdn/getting-started/getting-started-with-opensdn-development.rst
https://docs.opensdn.io/contributing-to-opensdn/getting-started/getting-started-with-opensdn-development.html
https://docs.opensdn.io/contributing-to-opensdn/getting-started/getting-started-with-opensdn-development.html
https://docs.opensdn.io/contributing-to-opensdn/getting-started/getting-started-with-opensdn-development.html

90Main contribution steps
1) Prepare a GitHub account with publicly visible e-

mail
2) Install Git and obtain an SSH

key
3) Link your Gerrit account with the GitHub account
4) Install “git-review” on your local machine
Ask questions if they arise

91Why OpenSDN
● Smaller community – easier to converse with members
● More chances for a commit to be accepted
● Less distances to core members
● It is mature, but young:

– Great start for your career
– Open to innovations and proposal

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

